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Abstract—The movement-related cortical potential (MRCP) is
a low-frequency component of the electroencephalography (EEG)
signal that originates from the motor cortex and surrounding corti-
cal regions. As the MRCP reflects both the intention and execution
of motor control, it has the potential to serve as a communication
interface between patients and neurorehabilitation robots. In this
study, we investigated the EEG signal recorded centered at the Cz
electrode with the aim of decoding four rates of force development
(RFD) during isometric contractions of the tibialis anterior muscle.
The four levels of RFD were defined with respect to the maximum
voluntary contraction (MVC) of the muscle as follows: Slow (20%
MVC/s), Medium (30% MVC/s), Fast (60% MVC/s), and Ballistic
(120% MVC/s). Three feature sets were assessed for describing
the EEG traces in the classification process. These included: (i)
MRCP Morphological Characteristics in the δ-band, such as timing
and amplitude; (ii) MRCP Statistical Characteristics in the δ-band,
such as standard deviation, mean, and kurtosis; and (iii) Wideband
Time-frequency Features in the 0.1-90 Hz range. The four levels of
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RFD were accurately classified using a support vector machine.
When utilizing the Wideband Time-frequency Features, the ac-
curacy was 83% ± 9% (mean ± SD). Meanwhile, when using
the MRCP Statistical Characteristics, the accuracy was 78% ±
12% (mean ± SD). The analysis of the MRCP waveform revealed
that it contains highly informative data on the planning, execution,
completion, and duration of the isometric dorsiflexion task. The
temporal analysis emphasized the importance of the δ-band in
translating to motor command, and this has promising implications
for the field of neural engineering systems.

Index Terms—NeuroHaptics, force decoding, BCI.

I. INTRODUCTION

MOTOR-RELATED potentials are the aggregation of neu-
ral activity in the motor cortex. The neural activity

can be related to sensory integration, motor preparation, motor
learning, and execution of a motor task [1], [2], [3], [4], [5],
[6]. Research suggests that the dorsal premotor cortex (PMd)
is pivotal in motor planning [7], [8], [9]. Additionally, the
supplementary motor area (SMA) is recognized as a vital hub
for integrating information from cognitive, motor, and sensory
sources [10], [11]. When electroencephalography (EEG) record-
ings are taken from the central region of the brain, particularly
near the Cz electrode location, they represent motor-related local
field potentials (LFPs) in the premotor cortex, SMA, and medial
motor cortex [12], [13], [14].

Motor-related potentials can discriminate motor impairments,
quantify a variety of tasks and also monitor the improvements
after rehabilitation, especially for stroke and other central ner-
vous system impairments [3], [15], [16], [17]. Motor-related
potentials are especially important from the human-machine
interface perspective because they provide information about
the sensorimotor processing which precedes motor actions [15],
[18], [19]. For cue-based movements, the PMd is believed
to have a major role in this pre-movement activity which
can be captured as negative deflections in the motor-related
potentials [20], [21].

The most noticeable characteristics of the movement-related
cortical potential (MRCP) are the negative deflections in the
neural trace. The MRCP is a component of the low-frequency
(0–4 Hz, δ-band) EEG, which is elicited when a cued or self-
paced voluntary movement is planned and executed [22], [23],
[24], [25]. EEG electrodes positioned at the mid-central area
of the brain, such as Cz, are used to record MRCP in response
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to lower-limb movements. These electrodes predominantly re-
flect sources from the premotor cortex, primary motor cortex,
and SMA [4], [26], [27], [28]. The MRCP comprises three
components, namely the readiness potential (RP), movement-
monitoring potential (MMP), and motor potential, correspond-
ing to movement planning, control, and execution [29], [30].
The RP, also known as the Bereitschafts potential in the case of
self-paced movements, is a negative deflection that may begin
as early as 2 seconds before the movement onset [29], [31].

The RP consists of two phases, the second of which usually
has a steeper slope and maximum amplitude over the primary
motor cortex [31]. Both the RP and MMP have been shown to be
related to the task’s kinetic parameters, for example, force and
rate of force development (RFD) [22], [29]. In response to motor
imagery, an imaginary MRCP is generated, which typically has
a smaller amplitude than an actual movement [29]. The MRCP
has been utilized to forecast and comprehend task execution
in both healthy adults and individuals with medical conditions
such as Parkinson’s disease, tremor, and stroke [25], [32], [33].
The existence of an MRCP in response to motor tasks such as
isometric dorsiflexion has been detected with an accuracy>85%
in related studies [34], [35].

For brain-computer interface (BCI) and neurorehabilitation
technologies, it is crucial to map the MRCP to multiple levels of
a single kinetic parameter. However, existing studies have had
difficulty achieving high classification accuracy with more than
two levels of a single parameter [36], [37]. Nonetheless, studies
have shown that the MRCP can be detected with low latency
(high temporal resolution) [35], [38]. Identifying the MRCP at
various levels of a single kinetic parameter will be a significant
step forward for BCI and neurorehabilitation technologies. Ad-
ditionally, the MRCP can distinguish left vs. right hand, and
foot movements [39], [40]. When using the MRCP to map to
a kinetic parameter, distinguishing two levels of force or RFD
has been successful (accuracy >74% for force, accuracy >81%
for RFD) [41]. Successful classification of multiple RFD levels
is particularly important as the human-machine interface (HMI)
can aid the user in performing the task at the intended speed.
This provides an additional motor dimension beyond the start
and stop of the task and may be crucial for neurorehabilitation
technologies.

Decoding multiple levels of movement intensity with MRCP
features has strong potential in BCI technologies, such as assist-
ing impaired users with task execution at the desired intensity.
The aim of this study is to evaluate the capacity of EEG, in
particular, δ-band MRCP features, to decode four levels of
RFD during isometric ankle dorsiflexion. Our first hypothesis
is that four levels of RFD can be accurately discriminated using
full-band EEG features from a larger scalp area spanning nine
central electrodes. Secondly, we hypothesize that the MRCP’s
temporal δ-band features from the Cz electrode can achieve a
comparable classification accuracy.

This study investigates the potential discrimination of four
RFD levels with MRCPs, comparing features both in the δ-band
and in the full EEG band. Healthy subjects performed isometric
ankle dorsiflexion while EEG signals were recorded. Character-
istics of the MRCP that scaled in response to the RFD, such as

amplitude and timing, constituted the first feature set (the MRCP
Morphological Characteristics, see II-E for detailed feature def-
initions). A second feature set was constructed from ten temporal
attributes of the MRCP, such as mean and standard deviation (the
MRCP Statistical Characteristics, see II-F for detailed feature
definitions). Highlighted features from the morphological and
statistical characteristics demonstrated a monotonic response
to the intensity of the RFD. Some highlighted features are as
follows: min1 and minn for the morphological characteristics,
slope and standard deviation in the (0, 1)s window for the statis-
tical characteristics. The classification accuracy of each feature
set was evaluated by using a support vector machine classifier
to predict the RFD level and applying 5-fold cross-validation.
A third feature set which consisted of time-frequency features
in the 0.1–90 Hz band from nine electrodes of the motor cortex
(the Wideband Time-frequency Features, see II-G for detailed
feature definitions), was investigated, and the performance was
used as a benchmark. The low-frequency temporal features in
the MRCP Statistical Characteristics showed a relatively strong
discriminative power, with an accuracy of 78%. The results
highlight the role of the δ-band in translating motor command
and have potential applications in HMI systems.

II. METHODS

Five healthy volunteers (aged 20-28 years), without any prior
HMI experience participated in the study. All subjects gave their
signed consent, which was conducted in accordance with the
principles outlined in the Helsinki Declaration and approved
by the University College London Department of Clinical and
Movement Neurosciences (approval date: April 26th 2017, ap-
proval reference number: 10037/001).

A. Experimental Protocol

Each subject was seated in a chair with their leg constrained
and ankle fixed to a pedal with an attached force transducer
(NEG1, OT Bioelettronica, Torino, Italy, Fig. 1(a)). Subjects
were instructed to perform a defined rate of isometric dorsi-
flexion of the dominant-sided (right in all subjects) ankle. Four
rates of force development (RFD) were defined based on the
time interval to reach a target force level of 60% of maximal
voluntary contraction (MVC). With real-time visual feedback,
subjects followed a triangular profile (Fig. 1(b)) from 0 to 60%
MVC with the durations of: (i) 3 s, (ii) 2 s, (iii) 1 s, and (iv)
0.5 s, corresponding to RFDs of (i) 20% MVC/s (Slow), (ii)
30% MVC/s (Medium), (iii) 60% MVC/s (Fast), and (iv) 120%
MVC/s (Ballistic).

Each experimental session started with measuring the maxi-
mum voluntary contraction (MVC) force so that the RFD levels
could be defined. A training phase (approximately 5 min) was
included to let the subjects familiarize themselves with execut-
ing the defined force profile while receiving visual feedback.
Subjects were guided to execute a set of at least 25 successful
isometric ankle dorsiflexion repetitions at each of the four target
RFD levels. The RFD level was constant across all repetitions
within a given set, and there was a 5 s resting period between each
repetition [27], [43]. The sequence of the four sets corresponding
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Fig. 1. (a) EEG signals were recorded from 64 electrodes, and force signals were measured using a load cell while subjects performed guided isometric ankle
dorsiflexion. (b) (i) Subjects were guided to reach 60% maximum voluntary contraction (MVC) with four durations (0.5 s, 1 s, 2 s and 3 s), giving four target levels
of rate of change of force (Ballistic: 120% MVC/s, Fast: 60% MVC/s, Medium: 30% MVC/s and Slow: 20% MVC/s). (ii) The mean and 95% confidence interval
(CI95) executed force plots are shown for each of the Slow, Medium, Fast, and Ballistic tasks. (c) EEG signals are pre-processed by applying a high-pass filter
at 0.1 Hz, removing power line noise with a notch filter at 50 Hz, and removing unwanted artifacts with an ICA-based method [42]. The MRCP is produced by
applying a low pass filter at 4 Hz and performing a Laplacian spatial filter with eight electrodes surrounding Cz. (d) Several MRCP morphological characteristics,
such as the time features of the minima, seem to scale with the task duration. Heat maps indicate that δ-band activity is highest for Cz and scales in proportion to
RFD.

to the RFD levels was randomized for each subject. Between
each set, a break of 5 min was provided [27], [43]. If the study
personnel observed in real-time that the executed force for a
given repetition had a large deviation from the target force
profile, the repetition was marked as a failure, and an extra
repetition was added to the current set.

B. Data Acquisition

EEG data were wirelessly recorded from 64 electrodes as-
sembled on an active-electrode cap (ActiChamp, Brain Products
GmbH, Germany) at 1000 Hz. The 64 electrodes were arranged
according to the extended 10–20 (10%) configuration [44]. The
force signal was recorded at 2048 Hz from a force transducer
mounted on a pedal and connected to an amplifier (Quattro-
cento, OTBioelettronica, Turin, Italy). At the start of each set
of isometric dorsiflexions, a trigger pulse was sent to the EEG
recording system when the force signal recording started, such
that the EEG and force signals could be synchronized later. The
movement onset was defined as the time at which the force signal
reached 10% of its peak trial value (approximately 6% MVC,
as in Fig. 1(b)). Using this movement onset time as 0 s for each

trial, a (−3, 4)s window was used to investigate the EEG signals
for each trial.

C. EEG Pre-Processing

Following the recording, signals were processed using MAT-
LAB R2022b (MathWorks Inc. Natick MA). Nine EEG elec-
trodes of interest, including and neighboring Cz, i.e., P3, Pz,
P4, C3, Cz, C4, F3, Fz, and F4, were used for the analysis
(Fig. 1(c)). EEG signals from the nine electrodes were filtered
with (i) a zero-phase, 2nd-order Butterworth high pass filter with
a cutoff frequency of 0.1 Hz and with (ii) a zero-phase, 4th-order
Butterworth band stop filter (47.5–52.5 Hz) to remove line noise.
Unwanted signal artifacts were removed with an ICA-based
algorithm [42].

D. MRCP Analysis

The nine pre-processed EEG signals were low-pass filtered
at 4 Hz with a zero-phase, 4th-order Butterworth filter. To
extract the MRCP, a Laplacian spatial filter was applied to
the Cz electrode to enhance the spatial resolution (Fig. 1(c)).
The mean MRCP, μsam, across all trials of all subjects was
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Fig. 2. (a) Mean (center line) MRCP with 95% confidence interval (shaded area) across all subjects. (b) Mean MRCP for each class of RFD, where the dots
signify local minima. The first local minimum (min1) and last local minimum (minn) are indicated for the Slow RFD. The slope of the late readiness potential
(RP2 slope) is indicated for the Ballistic RFD. The time between the first and last local minimum (denoted by a horizontal dashed line) is closely related to the
duration of the force application. (c) Topographical plots of δ-band activation for the recorded electrodes. The maps in the top row considered the movement onset
(0 s), while the maps in the bottom row considered the planned movement end as the time window center. The dominant δ-band activation appears to be at Cz
and is monotonically ascending with the level of RFD (with Slow having the smallest and Ballistic having the largest). The activation of Cz trended higher at the
movement onset than at the end. For each subject and trial, the median activity was quantified for the 100 ms window around the specified time. Here, the maps
represent the median across all subject trials and were normalized to the maximum activity across the eight plots.

computed, for each RFD, and the results can be seen in Fig. 2(a)
and (b). Additionally, the sample standard deviation, stdsam =
σ√
n

, across all trials of all subjects was computed and used to
compute the MRCP’s 95% confidence interval (CI95, Fig. 2(a))
as CI95 = μsam ± (Z95)(stdsam) = μsam ± (1.96)(stdsam).
The δ-band activity was plotted, resulting in the activation heat
maps as explained in the following. After band-pass filtering,
each of the 64 recorded electrodes was spatially filtered with an
appropriate Laplacian configuration. The configuration was cho-
sen based on the position of the electrode of interest and its sur-
rounding electrodes such that the Euclidean distance deviation
from the ideal configuration was minimized [45]. The configura-
tion was chosen based on the position of the electrode of interest,
and its surrounding electrodes [45]. The median magnitude of
each electrode’s time domain signal across all subject trials was
computed, and the median in a 100 ms window produced a

singular value for the topographical heat maps (Fig. 2(c)). The
100 ms window was centered at the movement onset for the
maps in the top row (centered at 0 s for all classes). For the
bottom row, the window was centered at the planned movement
end (centered at 3 s for Slow, at 2 s for Medium, at 1 s for Fast
and at 0.5 s for Ballistic). Each electrode’s value was normalized
using the maximum across the eight plots in Fig. 2(c).

E. Feature Set 1: MRCP Morphological Characteristics

The following features were extracted from the MRCP signal
at Cz, MRCP (t), for each trial:

1) The RP2 slope (mRP2), i.e., the slope of the MRCP signal
MRCP (t) between −0.5 s and 0 s [31]:

mRP2 =
MRCP (0)−MRCP (−0.5)

0.5
(1)
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Fig. 3. Violin plots of MRCP features (without rank transformation). The raw feature values for all subject trials are shown for each distribution (n = 125). See
Section II-H for more information about how to interpret the violin plots.

2) The first local minimum’s value,min1, traditionally called
peak negativity (PN)

3) The time at which min1 occurred, tmin1

4) The number of local minima, Nmin

5) The last local minimum’s value, minn
6) The time at which minn occurred, tminn

.
For demonstration purposes, min1 and minn are indicated

on the mean MRCP of the Slow RFD, while RP2 slope is
highlighted for the Ballistic RFD (Fig. 2(b)). The local minima,
including min1 and minn, were identified for each trial by find-
ing peaks of the inverted MRCP signal. Therefore, the findpeaks
command in MATLAB was applied to −MRCP (t) with the
following parameters: (i) peak must occur within the (−0.5, 4)s
time window (to include most extreme cases of local minima),
(ii) peak height equal to at least half of global maximum, (iii)
time between peaks equal to at least 0.25 s. The classification
performance of the full feature set (Fig. 5) and each feature
alone (Fig. 6) was investigated.

F. Feature Set 2: MRCP Statistical Characteristics

The following features were extracted from MRCP (t) for
the following time windows, (−3, 0)s, (0, 1)s, (1, 2)s, (2, 3)s,
and (3, 4)s, within each trial:

1) Mean value
2) Standard deviation (std)
3) Mean absolute value
4) Trapezoidal integral (area under the curve)
5) Slope mif between the initial MRCP value of the time

window MRCP (ti) and the final MRCP value of the
time window MRCP (tf ):

mif =
MRCP (tf )−MRCP (ti)

tf − ti
(2)

6) Slope sign change (SSC), which is calculated thus for a
given signal x(t) [46], [47]:

SSC =

N−1∑
n=2

f{((x(tn)− x(tn−1))

× ((x(tn)− x(tn+1))}

f{y} =

{
1 if y > 0

0 otherwise
(3)

7) Mean d
dt of MRCP signal

8) Skewness s, which gives a measurement of how asym-
metrically a signal is distributed about the mean, as

s = E

[(
x− μ

σ

)3
]
. (4)

9) Kurtosis k, which evaluates the tailedness of a distribu-
tion as given below:

k = E

[(
x− μ

σ

)4
]

(5)

10) Shannon’s entropy H(x), which gives a measure of the
uncertainty in a signal x(t) as:

H(X) = −
∑

PX(Xi)log2PX(Xi) (6)

whereX denotes the discretized version of the signal and
PX(Xi) denotes the distribution of X [48], [49], [50].

All features computed in each time window were included in
the feature set (10 features × 5 windows = 50 features) used
to train and evaluate the performance of the classifier (Fig. 7).
We also evaluated the classifier performance when it was only
trained on individual time windows (e.g., 1 to 2 seconds, or 3 to
4 seconds), which is depicted in Fig. 8 and Table III.
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Fig. 4. Post-hoc RM-ANOVA pairwise comparisons regarding the effect of RFD level are indicated for the highlighted rank-transformed features. As five subjects
conducted 25 trials at four RFD levels in our analysis, each rank-transformed feature has a value between 1 and 500 (5× 25× 4 = 500). The color-coded bar
and associated vertical black line indicate the estimated marginal mean (EMM) and 95% confidence interval at a given RFD level. (a) The RP2 slope, min1, and
minn showed trends of monotonical ascension, while tminn and Nmin showed trends of monotonical descension in response to increasing RFD. Five of the six
features shown demonstrated a difference between Slow and Ballistic RFD (p < 0.009). (b) The slope in the (−3, 0)s window and the std in the (0, 1)s window
showed trends of monotonical ascension, while the slope in the (0, 1)s window, the slope in the (1, 2)s window, and the mean in the (2, 3)s window showed trends
of monotonical descension in response to enlarging RFD. Five of the six features shown demonstrated a difference between Slow and Ballistic RFD (p < 0.012).

Fig. 5. Classification accuracy from the MRCP Morphological Characteristics
(Feature Set 1). (a) Subject-wise violin plots of classification accuracy. The
distribution of the classification accuracy across the five folds is shown for each
subject. See Section II-H for more information about how to interpret the violin
plots. (b) Overall confusion matrix. The classification results from all subjects
are pooled, and the mean accuracy is shown above.

G. Feature Set 3: Wideband Time-Frequency Features

The nine pre-processed EEG signals were filtered with a
zero-phase, 4th-order Butterworth low-pass filter with a cut-off
frequency of 90 Hz. The short-time Fourier transform (STFT)

Fig. 6. Feature-wise classification accuracy from MRCP Morphological char-
acteristics (Feature Set 1). Each violin plot depicts the accuracy obtained when
classifying the level of RFD with the highlighted feature alone. See Section II-H
for more information about how to interpret the violin plots.

was performed on each trial with 50% overlapping Hamming
windows of 2 s. The nine-electrode STFT formed the Wideband
Time-frequency Features in the broad frequency range of interest
(0.1–90 Hz).
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Fig. 7. Classification accuracy from the MRCP Statistical Characteristics
(Feature Set 2) from all time windows. (a) Subject-wise plots of classification
accuracy. The distribution of the classification accuracy across the five folds is
shown for each subject. See Section II-H for more information about how to
interpret the violin plots. (b) Overall confusion matrix. The classification results
from all subjects are pooled and mean accuracy is shown above.

Fig. 8. Window-wise classification accuracy from statistical characteristics
(Feature Set 2). Each of the first five violin plots depicts the accuracy obtained
when classifying the level of rate of change of force with features across just that
time window. The final violin plot shows the accuracy when classifying with
features pooled from all time windows. Each violin plot shows a subjects×
folds distribution for the given time window. The green line plot indicates the
mean classification accuracy. See Section II-H for more information about how
to interpret the violin plots.

H. Violin Plots

Note that each violin plot in this paper shows the distribution
of data points as density curves. The width of each curve cor-
responds with the approximate frequency of data points along
the y-axis. Within each violin plot, there is a box plot where
the white dot indicates the median and the grey box shows the
interquartile range.

I. Statistical Analysis

The relationship of features with respect to the four levels of
RFD was analyzed for the MRCP Morphological Characteristics
(Feature Set 1) and for the MRCP Statistical Characteristics
(Feature Set 2). The feature distributions when combining all

TABLE I
RESULTS FOR THE RM-ANOVA MODEL TO TEST THE EFFECT OF RFD LEVEL

ON THE MRCP MORPHOLOGICAL CHARACTERISTICS

TABLE II
RESULTS FOR THE RM-ANOVA MODEL TO TEST THE EFFECT OF RFD LEVEL

ON THE MRCP STATISTICAL CHARACTERISTICS

subject trials at each RFD level are shown as violin plots for
Feature Set 1 and Feature Set 2 (Fig. 3). Note that each of the
five subjects performed 25 trials at four RFD levels. Hence,
a 2-way Repeated Measures ANOVA (RM-ANOVA) model
was chosen, where the two factors were the RFD level and
trial number [51], [52]. Since the normality assumption was
violated by the raw feature distributions, a rank transforma-
tion was performed to ensure normality prior to conducting
RM-ANOVA [53], [54]. As five subjects conducted 25 trials
at four RFD levels in our analysis, the rank-transformed fea-
tures have a value between 1 and 500 (5× 25× 4 = 500). The
RM-ANOVA analysis was conducted in IBM SPSS Statistics
for Windows, Version 29.0.2.0, Armonk, NY. With regard to
the RM-ANOVA model assumptions, it should be noted that
for all rank-transformed features: (i) normality was maintained
(Shapiro-Wilk Test: p > 0.05), (ii) no significant outliers were
observed, and (iii) sphericity (homogeneity of variances) was
maintained (Mauchly’s test: p > 0.09) [51], [55].

The significance level for the RM-ANOVA tests was α =
0.05. It should be noted that the effect of the trial number was
not significant for any of the MRCP features (RM-ANOVA:
F (24, 96) > 0.095, p > 0.96), the effect of interaction between
trial number and RFD level was not significant for any of the
MRCP features (RM-ANOVA: F (72, 288) > 0.095, p > 0.96),
and only the effect of the RFD level is reported in the Results
section. The RM-ANOVA test results for the effect of RFD level,
including F-statistic, p-value, and effect size (partial eta-squared,
ηp) are shown in Tables I and II. If the effect of RFD level
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Fig. 9. An example STFT plot (spectrogram) is shown for the Cz electrode
during the Ballistic task. Feature Set 3 includes STFT features from nine
electrodes including Cz.

was significant (F (3, 12) > 3.475, p < 0.05), post-hoc pairwise
comparisons were conducted using the estimated marginal mean
(EMM) (Fig. 4). The color-coded bar and associated black
vertical line indicate the EMM and 95% confidence interval,
respectively, at a given RFD level (Fig. 4). The significance level
was adjusted for multiple comparisons using the Bonferroni-
Holm procedure [56], [57], and a significant p-value is indicated
with bold font and a solid line (Fig. 4).

J. Machine Learning Classification

A Support Vector Machine (SVM) classifier with a linear
kernel function was used for all feature sets. For a given sub-
ject, there were 25 trials of each RFD class (Slow, Medium,
Fast, Ballistic). The machine learning model was evaluated by
performing k-fold cross-validation with k = 5 [58], [59]. The
trials of each subject were divided into five distinct folds. Four
folds, ∼20 trials for each subject, were designated for training
the classifier while the remaining fold, ∼5 trials, constituted the
test set. The accuracy of the trained classifier was evaluated by
predicting the RFD level of each trial in the test set based on the
EEG features, and comparing the prediction to the ground truth.
The train and test process was repeated for each of the five folds.
The distribution of the classification accuracies across the five
folds of each subject is shown for Feature Set 1 in Fig. 5(a), for
Feature Set 2 in Fig. 7(a), and for Feature Set 3 in Fig. 10(a).
The confusion matrices in Figs. 5(b), 7(b), and 10(b) indicate the
patterns of classification performance across all subject trials.
The distribution of classification accuracies across all subject
folds is shown for each feature in Fig. 6 and for each time window
in Fig. 8.

III. RESULTS

A. Feature Set 1: MRCP Morphological Characteristics

Increases in RFD resulted in identifiable changes in the MRCP
signal features. The CI95 plots demonstrated significant dif-
ferences between the group average MRCPs across the RFDs
(Fig. 2(a)). The value of the first local minimum, the distance
between the first and last local minima, and the MRCP slope
before the execution, i.e., the readiness potential (RP2), seemed

Fig. 10. Classification accuracy from wideband STFT features (Set 3) derived
from the full spectrum of nine electrodes. (a) Subject-wise plots of classification
accuracy. The distribution of the classification accuracy across five folds is shown
for each subject. See Section II-H for more information about how to interpret
the violin plots. (b) Overall confusion matrix. The classification results from all
subjects are pooled and the mean accuracy is shown above.

to be among the features contributing to the separation of the
MRCPs and their respective CI95. Furthermore, the distance
between the first and last MRCP minima seemed to scale with the
force development time for each group (Fig. 2(a) and 2(b)). The
activation maps after Laplacian filter indicated monotonically
increasing activity around the Cz area from the Slow, to Medium,
to Fast, and to Ballistic RFDs. This activity tended to diminish
at the end of the force development (Fig. 2(c)). For reference,
the force development time is 3 s for the Slow group, 2 s for the
Medium group, 1 s for the Fast group, and 0.5 s for the Ballistic
group. The brain activity centered around Cz trended highest
at the time points considered for Ballistic, particularly at the
movement onset (Fig. 2(c)).

The rank-transformed MRCP Morphological Characteristics
showed significant differences depending on the level of RFD for
pre-movement, movement onset, and post-movement features.
The effect of RFD level was significant for the following features
within the rank-transformed MRCP Morphological Character-
istics: RP2 slope, min1, minn, tminn

, and Nmin (RM-ANOVA:
F (3, 12) > 7.14, p < 0.006) (Table I). The EMM of RP2 slope,
min1, and minn showed trends of monotonical ascension in
response to increasing RFD level (Fig. 4(a)). The post-hoc
RM-ANOVA test showed that RP2 slope and min1 were higher
at the Ballistic RFD compared to the Slow, Medium, and Fast
RFD levels (RP2 slope: p < 0.008,min1: p < 0.011) (Fig. 4(a)).
The EMM of features with a post-movement component such
as tminn

and Nmin showed trends of monotonical descension in
response to increasing RFD level (Fig. 4(a)). The post-hoc pair-
wise comparison indicated that tminn

andNmin were enlarged at
the Slow RFD compared to the Medium, Fast, and Ballistic RFD
levels (tminn

: p < 0.025, Nmin1
: p < 0.011) (Fig. 4(a)). Five of

the six features shown demonstrated a difference between Slow
and Ballistic RFD (post-hoc RM-ANOVA test: p < 0.009).

Using the MRCP Morphological Characteristics as the feature
set for the SVM algorithm demonstrated medium discriminative
power in relation to the four levels of RFD (>50%), which is
double the chance level for four classes (Fig. 5). The average
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TABLE III
WINDOW-WISE CLASSIFICATION ACCURACY (CA) USING THE MRCP STATISTICAL CHARACTERISTICS

overall accuracy was ∼58% across subjects and classes (Fig. 5).
The confusion matrix for this feature set also suggested a strong
discriminative power if only two RFD groups were considered
(Fig. 5(b)). The cumulative accuracy of the adjacent RFD groups
(i.e., Ballistic and Fast vs. Medium and Slow) reached >84%.
Note that this feature set had only six features derived from
the δ-band MRCP and robustly classified dual-level RFDs and
performed well beyond the chance level for the four-level RFD
classification using SVM. With regard to the feature-wise clas-
sification (Fig. 6), Nmin and min1 had the highest accuracy
(∼45%), followed by RP2 slope and tminn

(∼40%).

B. Feature Set 2: MRCP Statistical Characteristics

The rank-transformed MRCP Statistical Characteristics
showed significant differences depending on the level of RFD for
pre- and post-movement features. The effect of RFD level was
significant for all six of the highlighted rank-transformed MRCP
Statistical Characteristics (RM-ANOVA: F (3, 12) > 5.18, p <
0.016) (Table II). The EMM of the slope in the (−3, 0)s win-
dow showed trends of monotonical ascension in response to
increasing RFD level (Fig. 4(b)). The post-hoc RM-ANOVA test
indicated that the slope in the (−3, 0)s window was enlarged at
the Ballistic RFD compared to the Slow, Medium, and Fast RFD
levels (p < 0.009) (Fig. 4(b)). On the other hand, the EMM of
the slope in the (0, 1)s window showed trends of monotonical
descension in response to increasing RFD level (Fig. 4(b)). The
post-hoc pairwise comparison illustrated that the slope in the
(0, 1)s window and the mean in the (2, 3)s were higher at the
Slow RFD compared to the Medium, Fast, and Ballistic RFD
levels (slope in the (0, 1)s window: p < 0.009, mean in the
(2, 3)s window: p < 0.012) (Fig. 4(b)). Five of the six features
shown demonstrated a difference between Slow and Ballistic
RFD (post-hoc RM-ANOVA test: p < 0.012).

Combining the ten MRCP statistical characteristics from each
of the five time windows resulted in an RFD classification accu-
racy of >75% (Fig. 7). Four out of the five subjects had >75%
classification accuracy (Fig. 7(a), Table III). The mean accuracy
across subjects and RFD classes was ∼78% (Fig. 7(b)), with the
highest discriminative accuracy at 87.8% for the Slow RFD. The
cumulative accuracy of the two-level RFD with adjacent classes
(i.e., Ballistic and Fast vs. Medium and Slow) reached >91%
(Fig. 7(b)). Considering the MRCP Statistical Characteristics
only from selected time windows as the SVM feature set reveals
that the SVM classifier is likely most responsive to attributes
in the (1, 2)s window with accuracy ∼60% (Fig. 8). The least
discriminative power was for the (3, 4)s time window with∼30%
(around chance) accuracy. Interestingly, the median accuracy

with all the time windows included was ∼80%, which was
greater than each individual time window (Fig. 8). The detailed
per subject and window accuracy results also confirmed that for
all subjects, either the (0, 1)s or the (1, 2)s window provided the
highest accuracy (Table III).

C. Feature Set 3: Wideband Time-Frequency Features

An exemplar spectrogram plot for the STFT of one of the
nine electrodes included in Feature Set 3 is shown in Fig. 9.
The SVM classification using STFT full temporal and spectral
feature set yielded >80% classification accuracy for the four
levels of RFD. The subject-wise classification accuracy revealed
>80% accuracy for four out of the five subjects (Fig. 10(a)),
while the overall group accuracy for the STFT feature set was at
∼83% (Fig. 10(b)). In comparison to the wideband classification
accuracy, a preliminary analysis indicated that performing the
STFT on the nine electrodes filtered to the δ-band band led to a
reduced classification accuracy (∼67%). Adjacent classes with
the fastest RFDs (i.e., Fast and Ballistic) had a high mutual
misclassification rate compared to the misclassification rate
when the inter-class distance increased.

IV. DISCUSSION

A. Key Outcomes

In this paper, the ability of the MRCP to predict four levels
of RFD was investigated and novel success was achieved. Four
RFD levels could be discriminated with ∼78% accuracy when
only using δ-band MRCP statistical characteristics. In this study,
we investigated the complete MRCP waveform for four levels
of RFD, which provided a rich source of information about the
(i) planning, (ii) execution, (iii) completion, and (iv) duration
of the isometric dorsiflexion task utilizing the tibialis anterior
muscle. The results showed that morphological features, such
as the time between the first and last minima encapsulate crit-
ical information with potential use in HMI. We demonstrated
that both rank-transformed MRCP morphological and statistical
features present monotonic trends with respect to the RFD levels
(Slow RFD was differentiated from Ballistic RFD in 10 out of 12
features shown in Fig. 4, p < 0.012). This paper also highlights
morphological features such as the number of minima (Nmin)
and the time of the last minimum (tminn

) which have at least
the same discriminative power as previously highlighted features
such as RP2 slope and time of first minimum (min1). Using the
MRCP feature sets provides a transparent and interpretable SVM
classifier that is not a “black box” and can inform researchers
about the EEG waveform dynamics. The novel MRCP features

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on December 21,2024 at 15:35:04 UTC from IEEE Xplore.  Restrictions apply. 



O’KEEFFE et al.: LOW-FREQUENCY MOTOR CORTEX EEG PREDICTS FOUR RATES OF FORCE DEVELOPMENT 909

are neurophysiological indications of the underlying mechanism
of motor monitoring and execution by the motor cortex and the
neighboring areas. Our results illustrate the exciting possibility
of MRCP to RFD mapping, which has strong potential applica-
tions, particularly in neurorehabilitation.

B. New Findings About MRCP Characteristics

Previous studies have explored the significance of certain
MRCP features, such as RP2 slope and min1 [28], [60], [61],
[62], [63]. However, our research indicates that other features,
such as the timing of the last minimum (tminn

) and the number of
minima (Nmin), may have matched or superior discriminative
power (Figs. 4 and 6). We observed that while min1, minn,
and RP2 slope decreased in response to increasing RFD levels,
Nmin and tminn

increased (Figs. 2 and 4). Previous studies
have identified the local minimum of the negative deflection
that occurs around the movement onset as the peak negativity
(PN) [63], [64], denoted in this study as min1. The scaling
of PN (min1) may indicate the level of corrective actions and
error processing in the premotor and motor cortices [13], [65].
Interestingly, we observed that the PN is not necessarily a global
minimum when considering the full task duration (e.g., Slow in
Fig. 2(b)). Rather, the PN is just the first of a set of local minima,
indicating that the error processing and movement monitoring
can continue beyond the initial recruitment of the muscle.

Depending on the task duration, there may be deeper negative
deflections after the min1 point. Previous research indicated
that two levels of RFD can be detected by two distinct min1
points [36]. In our study, we defined four levels of RFD by
varying the duration to reach the target force (60% MVC). It was
demonstrated that min1 increases in response to the RFD level
(Figs. 2(a) and 4(a)). In addition, the timing of the last MRCP
minimum (minn) scaled in inverse proportion to RFD (Figs. 2(a)
and 4(a)). In other experimental setups with a constant force
duration rather than constant force, the amplitude rather than the
timing of MRCP minima would perhaps be more discriminative
regarding the RFD level. Our findings demonstrate that the
timing and intensity of the MRCP minima indicate different
motor activities and cortical processes [25], [66]. The minima
are distinctive features of the movement monitoring potential
(MMP) and are linked to the subject’s intention to correct errors
when tracking the force profile [29], [67].

C. Strong Discriminative Power of MRCP

The strong discriminative power of EEG features with regard
to four RFD levels validated both hypotheses in the study, and
shows promise for decoding the user’s intention with enhanced
resolution. The Wideband Time-Frequency features success-
fully discriminated the four RFD levels with a classification
accuracy of 83% (Fig. 10), validating the first hypothesis. The
MRCP Statistical Characteristics demonstrated 78% classifica-
tion accuracy (Fig. 7), highlighting the role of δ-band signals
in motor tasks. The four-class classification performance of
∼80% achieved here is comparable to previous studies which
only discriminated two levels of RFD [36], [41]. Even though

the full spectrum of EEG from 9 channels (9774 features) can
secure a 5% higher accuracy than the performance of δ-band
MRCP, the results support that the small feature set of statistical
MRCP characteristics can recover the classification performance
and closely follow that of the full spectrum, confirming the
second hypothesis. Furthermore, the two-level classification ac-
curacy with the MRCP Statistical Characteristics was at ∼90%
(Fig. 7(b)), suggesting strong discrimination of the behavior
based on the MRCP waveform when the Ballistic and Fast trials
are compared with the Slow and Medium trials.

Our preliminary analysis of applying the STFT only on the
δ-band showed an overall average accuracy of 67%, underlining
the advantage of the MRCP Statistical Characteristics compared
to the STFT feature set of the same signal. The strong clas-
sification accuracy of MRCP Statistical Characteristics (with
very low number of features) is aligned with the individual
features showing statistical differences between the levels of
RFD (Fig. 4(b)); for example, our analysis showed that the
Slow task can be differentiated from Ballistic by the rank-
transformed signal mean, slope and standard deviation features
(p < 0.012). The MRCP Statistical Characteristics are indica-
tive of the complexity of the waveform and the rate and overall
magnitude (and power) of the deflection of the waveform from
its baseline. The combination of these statistical characteristics
quantitatively describes the changes in the MRCP, and, based on
the results, can effectively map the signal to the different RFD
levels.

D. Significance in the Context of BCI

The results presented here show the advantageous inter-
pretability of the MRCP features. The MRCP Statistical Char-
acteristics and full-spectrum STFT feature sets achieved strong
accuracy thresholds with a simple SVM algorithm. The use of
brain-computer interfaces to decode spatial/kinematic aspects
of motion in the upper limb has been extensively studied, as
reflected in the literature [68], [69]. However, the literature is
limited when it comes to decoding kinetic aspects of motor
intention, specifically the intensity of task conduction. In recent
years, some research has been conducted to predict two levels
of rate of force development using EEG signals in the lower
limb [36], [62]. Despite these efforts, no study has been done
on discriminating more than two intensity levels. A higher
number of detectable intensity levels is crucial for improving the
resolution of BCI in decoding the intensity of intended motion
for more intuitive implementations.

This paper presents a novel investigation about the informa-
tion content of MRCP, in the context of decoding as many as
four grades of intensity, which has not been reported before.
In recent times, complex machine learning techniques such
as deep learning algorithms have been harnessed to process
various biosignals like EMG [70], [71], EEG [72], [73], and
MRCP [37], [74]. While such techniques often achieve high
performance, the high dimensionality of these models makes
it challenging to identify key features and interpret the results
neurophysiologically. Moreover, complex models require a large
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volume of training datasets, which may not always be feasible,
particularly for bio-signals. This study shows that using a min-
imal, neurophysiologically meaningful MRCP feature set pro-
vides adequate information about the kinetic output and enables
successful classification of the response with up to four levels
of intensity. This finding is significant because it demonstrates
that relatively low-dimensional feature sets can help with the
interpretability of results, especially when identifying motor
impairments.

E. Potential of MRCP-Based Neurorehabilitation

The illustrated relationship between MRCP and RFD has
significant potential for application to neurorehabilitation and
HMI by providing information about the patient’s intended
kinetic parameters (i.e., force and especially RFD), so that
the assistance can be tailored to the patient’s intended task
speed. We have shown that four levels of RFD can be most
accurately classified when considering features at and following
the movement onset (Fig. 8, Table III). The MRCP seems most
suited for assistive BCI where the movement prediction can
be ongoing while the subject attempts the task [75], [76]. By
utilizing the post-movement discriminative power of the MRCP
in conjunction with intention-detection algorithms [30], [32],
[35], there is potential for new BCI technologies to determine
the required assistive RFD for patients with sensorimotor im-
pairments, improving the quality of neurorehabilitation. Ad-
ditionally, the MRCP can be employed to trigger stimulation
at approximately the movement onset and prompt neuroplastic
changes in the nervous system [6], [34], [77]. The separation
between Slow and Ballistic RFD by MRCP features at or before
the movement onset (Fig. 4) shows the potential for adjusting
stimulation in proportion to the classified level of RFD. Notably,
the MRCP has been identified as a biomarker of stroke [78].
Therefore, the novel MRCP features discovered here can help
enhance this biomarker’s ability to differentiate impairments and
motor improvements.

F. Limitations

One limitation of this study is that source localization was
not performed on the EEG. The features pertaining to MRCP
deflections before the start of the task (RP1 slope, RP2 slope,
and min1) are components of motor preparation and likely to
originate from the PMd [21], [27]. The rest of the waveform
may represent mixed activity from the primary motor cortex,
SMA, and other neighboring motor cortices [21], [79]. Another
limitation is the number of subjects.

G. Future Work

Future works with a larger sample size can help to support the
results of this study regarding the statistical and machine learn-
ing analysis. Future studies can also investigate RFD prediction
from MRCP features when combining all subject trials and per-
haps evaluate the model performance with leave-one-subject-out
cross-validation [80], [81]. Previous works have shown that
the MRCP amplitude is reduced in response to fatigue [82],

[83]. Future research can investigate the influence of fatigue
on the proportionality between MRCP and RFD level that was
demonstrated here.

V. CONCLUSION

In this paper, four RFD levels were successfully classified
based on the MRCP. We found that the user’s intended RFD
level could be successfully decoded by features derived from
(i) full-band EEG spanning nine electrodes with a classification
accuracy of 83%, and (ii) the δ-band at Cz with a classification
accuracy of 78%. The findings validated both hypotheses of
the study, and show promise for decoding the user’s intention
from EEG with enhanced resolution. Key MRCP characteristics
responded to the task intensity in an intuitive manner. Moreover,
δ-band features showed high effect size and monotonic changes
across the four RFD levels. The monotonic response and high
classification accuracy show potential for mapping the MRCP
to the user’s intended RFD level. The relationship between
MRCP and RFD could be harnessed in assistive technologies
by allowing the patient to control the level of assistance based
on their intended intensity.

Disclaimer: This article reflects the views of the authors and
should not be construed to represent FDA’s views or policies.
The mention of commercial products, their sources, or their use
in connection with material reported herein is not to be construed
as either an actual or implied endorsement of such products by
the Department of Health and Human Services.
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